Intro to expressions and variables

Expression

Expressions are made up of one or all of these:

- numbers (2 or 3 or 4)
- variables (P, x, y, z, or n)
- operations (+,-,x,/)

Expression Examples 1

let A be the number of apples I have let B be the number of bananas.
$A+B$ expresses the

B-A expresses

Expression Examples 2

Let C be the number of cheetos you eat each day.

3C would express

7C would express

Expression examples 3

Let p the number of pennies
Let n be the number of nickles

What could these expressions mean?
$5 n+p$
$6 n+2 p$
$\mathrm{n}+\mathrm{p}$

Would an expression with any other operation besides adding make sense here?

Coefficient

Coefficients are the number part of the terms with variables.

```
In 3x+2y+7xy+5
```

the coefficient of the first term is 3 the coefficient of the second term is the coefficient of the third term is

A word on expressions...

You cannot solve an expression

You can write an equivalent expression, though!
$2 p+p$ is equivalent to $3 p$
$4 m+3 m$ is equivalent to $7 m$

Term

A small part of an expression or equation (often separated by addition or subtraction)

Example... in $3 x+2$ the terms are $3 \mathbf{x}$ and $\mathbf{2}$

What are the terms in:
$4+2 x+7 y$
$5 x+3-7$
$15+30+17+2 y+3 y$

Combining like terms...

Combining Like Terms is a process used to simplify an expression or an equation using addition and subtraction of the coefficients of terms. Consider the expression below

$$
5+7
$$

By adding 5 and 7 , you can easily find that the expression is equivalent to 12

"like terms"

How can we identify when a pair of terms are "like" .

The following are like terms because each term consists of a single variable, x, and a numeric coefficient.
$2 \mathrm{x}, 45 \mathrm{x}, \mathrm{x}, 0 \mathrm{x},-26 \mathrm{x},-\mathrm{x}$

Each of the following are like terms because they are all constants. 15, -2, 27, 9043, 0.6

Each of the following are like terms because they are all y2 with a coefficient.
$3 y 2, y 2,-y 2,26 y 2$

